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LETTER TO THE EDITOR 

The Hall effect in the normal state of the t-J model 

S M Manning and Y Chen 
Department of Mathematics, Imperial College, 180 Queen's Gale, London SW7 2BZ 
UK 

&Ned 3 August 1992 

AbslracL In this article we d+ using the gauge approach to the i- J model, the Hall 
conductivity (UH) and Hall mc5cient (RH) for lhc physical deetrons. W e  6nd that for 
sufficiently low doping (a), RH K a-', while for higher doping (at ked temperature.), 
RH changes sign. 

The Hall coefficient of a conventional Fermi liquid is independent of temperature, 
while its sign determines the type of charge carrier involved. However, experiments on 
the normal state of the high-T, cuprate superconductors reveal a far richer behaviour, 
as the Hall coefficient now depends on the temperature and doping of the sample, as 
well as the system considered [l ,  21. 

The temperature dependence of R, in YBa,Cu,O,-, is fitted well by 1/T + 
constant, as it is for La,-,Sr,CuO, when 6 lies in the range 0.14 Q 6 < 0.18, 
the supemnducting composition range [I, 3, 41. However, for L.a.Jr,CuO, when 
6 < 0.1, but finite, the Hall coefficient displays almost no temperature dependence 

Another feature of the Hall coefficient is its sign, which relates to the sign of 
the charge carrier involved in the relevant transport processes. For La,,Sr,CuO,, 
which is hole-doped, the sign of R, changes from positive to negative at 6 sz 0.3 
[2, 31. Similarly, for the electron-doped material Nd2_,Ce6CuO4, RH changes sign 
at 6 sz 0.16, but now from negative to positive, displaying a clear symmetry with the 
hole-doped example [2]. 

The dependence of the magnitude of RH on doping level is also of interest for the 
high-Tc cuprates. In &-,Sr,CuO, at very low doping levels, R, a 1/6, for 6 up 
to about 0.1 [2,3] or 0.05 [4], but decreasing more rapidly than 1/6 for higher values 
of the doping. The electron-doped Nd,-,Ce,CuO, shows a similar dependence on 6 
too, albeit with oppasite sign. 

Many ditferent theories have been proposed to explain the curious features of 
the Hall effect in the high-T, materials, but all fall into one of two groups: those 
employing a Fermi liquid approach, where changes in the topology of a Fermi surface 
are studied, and those in which models in the strong-coupling limit are examined; 
we shall consider the former category first. Kim et nl [5] considered the d-p model 
for the CuO, planes using the slave-boson method, where in order to obtain a value 
of R, that was positive for low doping levels, the bare tight-binding band structure 
had to be modified to include direct in-plane oxygen-oxygen overlap (hopping) terms 
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(else R ,  would have been negative). However, for a strictly two-dimensional system 
they found non-singular behaviour for RH, calculated using the Boltwnann equation, 
in the low-doping limit, which they were only able to rectify by changing to a three- 
dimensional band structure instead. Another approach has been given by Melo et a1 
[6], who investigated the Hall effect in the t-J model using a slave-boson approach 
combined with large-N expansion. They showed that by carefully treating the short- 
range antiferromagnetic correlations present, it was possible to obtain an R,, again 
determined using the Boltzmann equation (following Kohno and Yamada [=I), that 
changed sign, from positive to negative, with increasing doping. However, the method 
was unsuitable for examining the low-doping (Mott-Hubbard) regime, where R, 
diverges and no mention of the temperature dependence was made. A third point 
of view has been proposed by Voruganti et aI [q in studying the twodimensional 
Hubbard model. For non-zero doping and using incommensurate planar spindensity- 
wave (spiral) saddle points they found that, due to the associated change in the Fermi 
surface, R ,  changed sign for U / t  = 2-10 at dopings 6 = 0.02-0.5. They also found 
Rji' to be a monotonically increasing function of temperature, being practically a 
constant for low temperatures, but rapidly increasing when the temperature implied a 
sign change of R,, which corresponded to a transition from a spiral spin state, with 
RH > 0, to the antiferromagnetic state, where R, < 0. However, their model could 
not be used to a m u n t  for the linear resistivity characteristic of the high-T, systems. 

The other approach is based, typically, on a 1-J model in the continuum limit 
using the slave representation, consisting of fermionic ( p ,  yo; CI =I,  1) and bosonic e, y") slaves, interacting with each other through an internal gauge field (a) [%IO]. 
(The appearance of the gauge field is a reflection of the local phase symmetry of the 
t-J Hamiltonian.) The response of the electrons, the physical particles of thesystem, 
may then be studied by combining the slaves back into the electrons first and then 
perturbing the combined particle with the relevant external probes, but thii method is 
difficult [Ill, In an alternative, but physically equivalent and mathematically tractable 
method, the slaves are probed directly and then the nodoubleoccupancy constraint 
enforces a relationship between the electronic and unphysical slave responses. This 
approach was pioneered by Ioffe and Larkin [8] and has been successful in predicting 
a resistivity that displays a linear temperature dependence, as well as applying to 
several other problems [13-15], including the Hall effect, where it predict5 that 
R, - 6- ' ,  6 < 1 [I31 and the correct qualitative temperature dependence of R, 
may be obtained as a signature of the breaking of parity [U]. However, we have 
been unable to find any first-principles derivation of the Hall current using the gauge 
approach, and so in this work we present such a calculation. 

The (imaginary time) Lagrange function at the supersymmetric point J = 2t 
given in [IO] reads 

where the fermionic and bosonic slaves are subject to -D y y 0 -  - 1. Observe 
that U has no dynamics and can be expressed in terms of the stave currents through 
the field equation BL/aa = 0 and is given dynamics by integrating out the fermionic 
and bosonic slaves. Note that we have adopted the potential gauge a - 0 [16]. This 
is a non-relativistic non-linear o-model with one bosonic and two fepionic directions. 
The action (JL) gives equal bare masses for the slaves: mF = mg = J /b2 ,  b being 

'I -. 
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the lattice spacing [lo]. 'Ib investigate the Hall effect we couple an extemal vector 
potential (A) into the system and then find the effective action through to third order 
1171 in A, since the Hall current is proportional to the product of the external electric 
and magnetic fields [MI. 

lb do this we first integrate out the holons and spinons to give the action of 
the internal gauge field, which may be expressed as a power series of this field, with 
coefficients that are each the sum of a holon and a spinon term. The extemal field is 
then coupled to the holon and the effective action of A is calculated by integrating 
out the intemal gauge field. A saddle point procedure followed by solving the induced 
field in a series development of the external field, which should be a m a t e  enough 
to describe the response of the system to weak external fields, gives us the effective 
action and is found to be (using the 'super-condensed notation' where a suffut denotes 
a discrete element and a spacetime coordinate, e.g. A, U Am(=, T) and the repeated 
suffices are summed andlor integrated over) 

the charge e being the charge on the holon (see below). II$, is given by the Ioff'e 
Larkin result IS], II" = IIBIIF/(IIB + IIF) and r$7 is the three-field vertex; with 
the notation CB,F = +l/-l, it is 

where r' is the threefield vertex for the slave of species s and may be obtained 
from third-order perturbation theory, giving 

1 
rz@7(z1? %7 +3) = , ( ( J ~ ( . , ) J ~ ( . 2 ) J ~ ( . 3 ) )  

(4) 
3 

m s  
- -4+Y+, - . Z ) ( P S ( d J 3 + 3 ) } )  

(which may be easiiy written in a more symmetric form) J" and p" being the s-slave 
current and density respectively. 2, = (II,+ IIF)-l is the intemal gauge-field Green's 
function and IIs is the s-slave polarization [lo]. Note that if the spinons had been 
charged instead, then we would interchange B and F in ITen and ren, which leaves 
IIen unaltered, but introduces a sign change in rea. This is correct, since if the 
physical electron's charge is -e (e > 0), then the holon charge will be e, while the 
charge on the spinon would be -e. Therefore, in charging the spinons instead, we 
change the sign of e, so e3 becomes -e3, cancelling the sign change in rea, and 
hence the action is unchanged [19]. If the y' were the physical field of the problem, 
the screening factor [IIVl3 would not appear. Such factors may be interpreted as the 
reaction of the system to A. 

The physical current (J) is the derivative of the action with respect to A/" and 
is given by 
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To calculate the Hall current we follow 1211 and take A to be the sum of two fields, 
A(') and where the former CoReSpOndS to an electric field, iwA(')/c = E (real 
time) and the latter to a magnetic field, ik x A@) = B. For E = (O,E,O) and 
B = (O,O, B), the current in the 1-direction linear in both these fields h the Hall 
current (JF)  and is given by J r  = uH[E x B],, uH being the Hall conducthi@, in 
the limit w,  k 4 0, such that k/w -t 0. 

XI determine uH we must calculate the three-field vertices for the slaves. The 
temperature (7') of the system we take to be below the spinon's Fermi temperature, 
TF = nnF/mF, but above the Bose temperature of the holons, TB = nB/mg, 
where nBb2 = 6 and nFb2 = 1 - 6, 6 being the hole filling fraction. Then, 
for only the simplest diagram?., but introducing a transport lifetime (re) for the 
slaves, arising from dressing the slaves with the internal gauge field, and analytically 
continuing to real frequencies, in the small-w and small-k Limit, for the spinons, 
rEp7 = [6,& - 6p7kp]~nF(~F/mF)2/2,  which we take for the holons as weU. 
This calculation is based upon those in [ZZ, 231, wherein it is shown that for an 
isompic system, the tensor structure of the r is unaffected by including all possible 
graphs in its calculation (for a Fermi liquid). It follows that we are led to consider 
the term [lI"D]p,(O, -U), D being the real-time gauge-field propagator, which arises 
because the E-field is spatially uniform. We calculate this as [ I I sDJp , ( -~k ,  -U) 
for IE -+ 0 and thus obtain 

where L and T stand for longitudinal and transverse parts, respectively, and io the 
limits shown [nSD],(0*,O) = xs/(xB+ xF), x. being the diamagnetic susceptibility 
of the s-slave and [IIsD]LIT(O,O*) = u , / ( u ~ +  uF), where U ,  is the conductivity of 
the s-slave. These last results follow from II;(O,w) = - iup and ea = IIj'/wz, with 
the slave permittivity related to the conductivity by t S ( w )  x us/w [ZO]. Note that 
no initial photon is present here, which implies strict proportionality, but in three 
dimensions the analogous relations ensure that the permittivity tends to the correct 
high-frequency result, satisfying the plasma sum rule. Thus, 

UH=.$ . ($ ) ' [  uF ] 2 XF -nF(z)2[ l 2  xB 1 .  (7) 
uB+'F X B f  XF U B + ~ F  XB+XF 

In the temperature range used, xB = nB/12miT, while xF = 1/12nmp For the 
conductivities, if we take the classical result, U ,  = e2n,r,/m,, then we see that 
uH = 0 for 6 = 0 and 6 = 1. Since both the undoped (6 = 0) and fully doped 
(6 = 1) cases are insulating, these results are correct. However, the fully doped Hall 
conductivity is not strictly obtainable from the expression quoted as it would require 
T < TB, which is out of the temperature range considered. 

The Hall coefficient is given by RH = uH/(uee)2 and reads 

where Rf ,  is the Hall coefficient of the s-slave and for our simple calculation of the 
threefield vertices is given by Rf, = C,/n,. 
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Equation (8) was mentioned in [15-15] and not derived therein. Where some 
explanation has been forthcoming, reference to [SI has been made [15], but this can' 
only yield results for responses of the system that are linear in the external fields, 
while the Hall effect is second order. 

In the low-doping limit, we find that 

6<1 
1 

ngec R,= - 

which is independent of temperature. In fact, for 6 < 1, where xp >> xB, the 
linear resistivity regime, R s R\/ec. Therefore, the temperature dependence 

diagrams, including an intemal gauge field with an odd-panty element, has been 
shown to give to a leading-order temperature dependence [la as a signal of the 
spontaneous generation of magnetic field leading to parity breaking. As mentioned 
at the beginning, the temperature dependence can be a strong function of doping, as 
seen in &-6Sr6Cu0.,, where for very low doping levels practically no temperature 
dependence is observed. For higher doping levels, consistent with the temperature, 
we find that R, increases with temperature, which is contrary to experiment 

Another feature of the Hall coefficient of the hole-doped high-T, materials that we 
may discuss is the change of sign of R, with increased doping. At the supersymmetric 
point, RH changes sign, from positive to negative, between T/ J = 0.25, at 6 = 0.245 
and T / J  = 1.57, at 6 = 0.500, consistent with the temperature range where our 
calculation is valid, the doping being 2a6, = [ (4nJ/T + 1)'12 - l]T/J. Thus we 
see that despite changing sign over quite a wide range of temperatures, 6, does not 
vary as much 

Finally, we may consider the curious temperature regime T >> TF, TB. Now 
x, = nS/12m3T for both holons and spinons. At the supersymmetric point [lo], 
R, a (1 - 26)/6(1- 6), which vanishes at 6 = 1/2, i.e. quarter filling, when the 
numbers of holons and spinons are equal. Under the assumption of equal masses and 
such high temperaturesso both slave species obey Boltzmann statistics-the system 
consists of two fluids that have opposite slave charges, but are otherwise identical. 
Thus the fluids have equal and opposite Hall currents, the sum of which, and hence 
the Hall coefficient of which, is zero. 

In conclusion, we have determined the effective action of the t-J model coupled 
to an external electromagnetic field, in the slave representation, to third order in the 
field. We find that the IoffeLarkin result for the second-order action is unchanged 
and that the third-order term is, correctly, independent of which slave species is 
charged. From the action we have derived an expression for the Hall conductivity, 
which we explicitly calculate using the simplest set of graphs. This leads to a Hall 
coefficient that, for very low doping, is positive and inversely proportional to the 
doping and is independent of temperature. For higher levels of doping the Hall 
coefficient increases with temperature, which disagrees with the experimental results. 
However, we can obtain a change of sign with doping at temperatures within the 
temperature range considered. 

Throughout we have assumed the slave masses to be given by the bare masses, 
but we expect that a higher-order calculation would enhance the boson mass thereby 
depressing the Bose temperature and could give the Hall number the observed 
temperature dependence. 

of RH must come from R,, # at very low doping levels. Considering higher-order 
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Nole addcd in prmJ After submission we became aware of two bnhe r  studies of lhe Hall &ea wing 
the gauge 6eld appmach a m y  mzent papcr using gsenlially the mnhod daa ibcd  abovc [24] and a 
paper by Lee and Nagaosa [U], in which only the diagram for Ihe thrce-elvrurt "iator contribution 
to -YH was shown. 
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